
1 of 8

OSGi Adoption and Usage within the Enterprise #2

What obstacles must OSGi overcome to achieve widespread adoption within the enterprise?

Response

Count

 155

 answered question 155

 skipped question 107

Response Text

1 Tooling Oct 14, 2009 6:22 PM

2 Getting a decent build system that isn't P2, or otherwise IDE-dependent, for OSGi
bundles.

Oct 14, 2009 6:38 PM

3 Less invasive (go Blueprint!). Making packaging a bundle as seamless as creating
an EAR or WAR. Facilitating deployment. Basically, making the transition easier
for normal Java devs.

Oct 14, 2009 7:12 PM

4 Tooling mainly. Oct 14, 2009 7:43 PM

5 Documentation. Tutorials and cookbooks. Oct 14, 2009 8:01 PM

6 Making legacy applications works and addressing some performance problem like
memory usage and startup time.

Oct 14, 2009 8:34 PM

7 deprecate "required-bundles": keep it simple Oct 14, 2009 8:37 PM

8 I think many developers are not familiar with it. It should be promoted more being
compared to the ways of making enterprise software used so far. Plus there
should be more books talking about OSGi.

Oct 14, 2009 8:39 PM

9 Tools still need to improve a lot. Oct 14, 2009 9:03 PM

10 Tools to simplify the construction of manifests. Visualization of dependencies and
reporting capabilities for container instances to show runtime interactions and
requirements. A happy path from current SPI-style and classpath interactions for
Java into a more prescriptive modular usage of export and import.

Oct 14, 2009 9:29 PM

11 Ignorance.
Btw, I think you missed service-oriented architecture in question 7. OSGi services
are only the greatest thing ever :)

Oct 14, 2009 9:37 PM

12 Tool support, Designing support in the sense of some material / tools teaching
people how to think in OSGI

Oct 14, 2009 9:55 PM

13 There's a need for better tooling & IDE support. More capable framework
consoles are also needed.
Standards and best practices that enable gradual migration from existing JEE
based systems are also essential.
More high level programming models for OSGi - currently using SpringDM, but
would like alternatives.

Oct 14, 2009 10:02 PM

14 Tooling Oct 14, 2009 10:08 PM

15 OSGi must gain enough mindshare/market to remain the de facto option, even
after Jigsaw/JSR294 are available (and baked into the JDK)

Oct 15, 2009 12:31 AM

16 ignorance
better automated builds using manifest first vs. maven pom.xml

Oct 15, 2009 12:49 AM

2 of 8

Response Text

17 Better tooling support for development and testing, additional tools for managing
and monitoring the runtime. More 3rd party packages need to ship with OSGi
metadata. Having the ability to verify correctness at compile time instead of
waiting until runtime would also be useful (the mismatch between compile and run
time is a problem with our large team).

Oct 15, 2009 1:54 AM

18 The misconception that it is complex and heavyweight. Oct 15, 2009 2:55 AM

19 * availability of every library used in enterprise development as fully tested OSGi
bundle. It should be out of the box and directly from the horse's mouth.
* enterprise libraries should now consider providing add-ons that can expose their
regular libraries as OSGi services
* Finding dependencies for a combination of libraries is still a mess, this should be
addressed (libd / obr / karaf-features etc). A common robust and well accepted
standard is required.
* Although not advised, developer has to often play with startlevels of bundles as
the applications tend to get bigger,
* A market place where I can shop and add bundles to my apps :)

Oct 15, 2009 3:00 AM

20 compatibility with JEE application servers Oct 15, 2009 5:25 AM

21 Developers experience must become smoother (updates of bundles often causes
'error-hunting' due to missing/wrong constraints). So Dev and Architects can
concentrate on their job/project and acutally use OSGi's benefits.

Oct 15, 2009 5:40 AM

22 Keep the asserts of Traditional Java EE Development and Deployment Model. Oct 15, 2009 6:28 AM

23 ease of use. better tools. Oct 15, 2009 6:36 AM

24 integration with application server such as tomcat should be simple and
transparent

Oct 15, 2009 7:02 AM

25 - More entreprise class OSGi servers, i.e. building upon an OSGi container and
adding log managment, startup/shutdown, tooling for isntalling/updating bundles,
etc.
- OSGi'fying most of the libraries out there
- Continue to improove the tooling

Oct 15, 2009 7:21 AM

26 More IDE support outside of the Eclipse-Ecosystem (Sun javac, ant, maven etc.) Oct 15, 2009 7:24 AM

27 convince managers to use OSGi Oct 15, 2009 8:39 AM

28 Availability of a OSGi-based Killer Application (non-IDE) Oct 15, 2009 8:55 AM

29 Tools! Simple tools that work and does not require any further hacking. Oct 15, 2009 9:17 AM

30 1. Tooling: better integration with IDEs
2. Documented design best practices

Oct 15, 2009 9:20 AM

31 OSGi should be treatened as a runtime solution and not as a end-user
development api.
As such, building up a solid toolchain from development to deployment is crucial.
J2EE Developers should not need to face "Missing-ImportPackage Exception.."
and friends. Deployment solutions must be more widespread
(DeploymentPackage, OBR, Apache ACE for example). Too many companies
who start to adopt osgi without inhouse experts (which is quite common) fizzle
with low level details across the whole development team+process.

Oct 15, 2009 9:23 AM

32 Java EE API are usually not OSGi friendly. This is a challenge to have them
working nicely in an OSGi environment.

Oct 15, 2009 9:33 AM

33 - Better version management based on OSGi components
- Not to be so connected to Java world (classloaders are example)

Oct 15, 2009 9:35 AM

34 Must be supported as first-class citizen by the enterprise grade JEE servers:
weblogic, websphere, etc.

Oct 15, 2009 9:38 AM

35 (Better) and standardized integration with JEE (esp. JPA, webapp) and more
documentation/books.

Oct 15, 2009 9:45 AM

36 Education -- Design and Deployment Best Practices
Better Development and Testing Tools
Clear Blueprint Architectures for different application types (e.g. Web apps)

Oct 15, 2009 9:48 AM

3 of 8

Response Text

37 More documentation for achieving simple things - less of this 'Spring will handle
everything' - it's nice there are frameworks for everything, but using them doesn't
help people learn wtf is actually going on under the hood!

Oct 15, 2009 10:03 AM

38 1. Visibility (and what it /actually/ is)
2. Tooling around OSGi (good but often arcane to people new to OSGi)
3. Better stability in the specifications and better specifications (e.g, DS changed
during r4, and the Component Model RFC seems to propose to replace it with a
standardized Spring DM, which is good but DS must provide backwards
compatibility using the same foundations)
4. More bundles for everything. It would be great if the OSGi Alliance and partners
could find a way to provide OSGified bundles and evangelism for all the Apache
Java stack, for example.

Oct 15, 2009 10:11 AM

39 It's mainly an issue of selling it to project sponsors. It mainly addresses non-
functional requirements, and so is a tough sell compared to adding new features.

I'm also puzzled about how to evolve an existing application to a osgi architecture
- what are the best practices for a phased (i.e. probably multi-year) migration? I'm
hoping some of the upcoming OSGi books will address this issue and am very
annoyed with myself for missing the recent presentation on this subject in London
;)

Oct 15, 2009 10:26 AM

40 There needs to be a good book available about OSGi Oct 15, 2009 10:32 AM

41 Closer integration with java and java runtime packaged into bundles.
Better tool support, e.g. maven (and a official maven repository for standard
bundles would be great).
Better documentation aimed at developers and applicable design patterns

Oct 15, 2009 10:37 AM

42 Better Startup time.
Better handling of dependencies.
Better development tools specifically for OSGi framework.

Oct 15, 2009 10:58 AM

43 An application server with an OSGi runtime container would be great. Oct 15, 2009 11:07 AM

44 Classloading issues when using remote services (JNDI, RMI).
More third party libs provided as bundles.

Oct 15, 2009 11:10 AM

45 understanding of the benefits Oct 15, 2009 11:21 AM

46 Improve build and deployment mechanisms.
More centralized documentation.

Oct 15, 2009 11:40 AM

47 Better support / documentation / examples on how to use together with hibernate /
AOP

Oct 15, 2009 11:48 AM

48 1. Too many bundles to manage when creating an Enterprise application - need a
library concept that includes a consistent set of bundles at a library version
2. Support for other web containers like OC4J to deply web bundles to
3. Simpler versioning, who keeps track of all these package versions, great in
theory but a pain in practice to maintain
4. better tooling - e.g. Bundle-Version in manifest (say the 3rd digit) to be
incremented automatically on a project code commit

Oct 15, 2009 12:00 PM

49 It must be easier to interact between bundles - more IDE support.
ClassPathloading-Issues must be easier to debug.

Oct 15, 2009 12:02 PM

50 Books / Case Studies Oct 15, 2009 12:06 PM

51 OSGi is Java based, and in some circles Java is considered a legacy language.
For all its promise of modularity and hot swappability it is still very difficult to write
modular, hot-swappable, well behaved OSGi code.

Oct 15, 2009 12:11 PM

52 managing and observing service-dependencies Oct 15, 2009 12:18 PM

53 OSGi is a great concept for nudging people toward true component engineering.
However, because it is so tightly bound to Java, it misses an opportunity to really
have the universal impact it could have.

Oct 15, 2009 12:18 PM

54 lack of consulting and education services Oct 15, 2009 12:33 PM

4 of 8

Response Text

55 Better component frameworks that support yet abstract away the problems
inherent with the dynamism of the runtime are needed. Declarative services
aren't flexible enough and blueprint is too fine-grained. The Apache Felix iPOJO
project, however, looks very promising.

Oct 15, 2009 12:33 PM

56 Tooling Oct 15, 2009 12:35 PM

57 Most importantly: not listening to the masses of mediocre J2EE fanboys who want
to "fix" OSGi without ever having read the actual spec.

Oct 15, 2009 12:37 PM

58 usability, user friendlyness, management tools easier to use . . Oct 15, 2009 12:42 PM

59 - Oct 15, 2009 12:44 PM

60 Better tooling. Oct 15, 2009 12:45 PM

61 The development stack is quite confusing and heavy right now. There are plug-
ins for Maven, etc. that help but it can still be burdensome to get dependencies
straight in manifest and such. Also, there needs to be more time put into creating
and maintaining bundles for OSS. SpringSource is doing a nice job, but they can
not do it alone.

Oct 15, 2009 12:46 PM

62 Better IDE and other tooling support. Oct 15, 2009 12:49 PM

63 - Complexity (cf : the service registry).
- It's sometimes difficult to understand error messages / dependencies problems
(a bundle may compile but won't work at runtime).
- Standardization, should I use Require-Bundle or Import-Package ?
- Not very easy to use in coordination with maven.

Oct 15, 2009 12:52 PM

64 Development tools are a big gap right now. There isn't enough in Eclipse, Spring
tools are too tied to dm, etc. This and a dearth of OSGi education has been a
barrier to wider spread adoption within my customer base.

Oct 15, 2009 12:56 PM

65 Industry support Oct 15, 2009 12:57 PM

66 Prove widespread successful use in commercial products Oct 15, 2009 1:02 PM

67 tool support needs to keep evolving
mainstream adoption will only follow widespread recognition of the value of
modularity and the benefits for agile development

Oct 15, 2009 1:15 PM

68 There has to be a -need-. For smaller systems, it's just not entirely necessary. Oct 15, 2009 5:00 PM

69 Core concepts of OSGi are imperative - there needs to be better and more formal
tutorials/books/etc. on modularity, lifecycle, services. As well as pragmatic use of
mature containers like Equinox and off-shoot technologies like P2 - that make
OSGi a reality and not just a specification.

Oct 15, 2009 5:03 PM

70 OSGi is an overengineered solution that causes far more problems than it solves.

After a year of developing with OSGi we were so disgusted with all of its problems
and complexities, that we evaluated using Maven to manage library conflicts (our
main reason for adopting OSGi in the first place).

In two weeks we were sold and shut down the OSGi project. Re-did everything as
regular Java projects managed by Maven.Everyone was way happier. OSGi is a
con, one of the biggest productivity hits I've ever seen. Right up there with J2EE
1.4 and Struts.

So, yes we evaluated OSGi for 8 months and dumped it. Never going back. Now
we test and build via a simple "mvn package" instead of having to deal with PDE,
target definitions, classloader conflicts, ClassCastExceptions and all the other
"fun" stuff that OSGi brings.

Never going back to OSGi development.

Oct 15, 2009 5:17 PM

71 Better build / deploy / provision / configure tooling. Oct 15, 2009 5:28 PM

5 of 8

Response Text

72 The biggest problems with any enterprise environment revolve around integration
issues. Leveraging OSGi's strengths in modularity and versioning to simplify
integration of existing systems would be a major selling point.

Slow startup time in an enterprise environment can be a problem, though not
necessarily caused by OSGi itself. Rather, the delayed startup is often due to
aggressive scanning of zip files by antivirus solutions. Since OSGi environments
consist of many jar (zip) files, the delay caused by real-time virus scanners for
each of the zip files can get out of hand quickly.

Oct 15, 2009 5:59 PM

73 Convincing the community to design their applications to use OSGi, but not
require OSGi. Dependency management is critical, as is application
independence from OSGi itself. OSGi should be used as a framework, not a
platform. Applications don't need OSGi to run, but OSGi certainly enables
developers to design and build highly modular software that can be dynamically
deployed, updated and maintained.

Oct 15, 2009 6:16 PM

74 Applicability to the web. Oct 15, 2009 6:23 PM

75 tool support always helps, and fantastic documentation Oct 15, 2009 6:48 PM

76 Mountains of legacy code. Oct 15, 2009 7:18 PM

77 Politics not technical obstacles Oct 15, 2009 7:27 PM

78 Many of popular frameworks and some good implementations of most relevant
standards have to be OSGi compatible and capable.

Oct 15, 2009 7:50 PM

79 In my world of investment banking, the biggest obstacle is getting people to
realise that they have a problem and that OSGi will help solve it. 100 man teams
struggling to produce components assembled by another team is a regular
occurrence. If you mention OSGi they usually think its 'overkill'.

Oct 15, 2009 8:00 PM

80 hm... good question. Perhaps Annotations would be a great secound way for the
configuration by bundles and in Eclipse Equinox "Search Engine Classes" for
Services and Bundles are missing.

Oct 15, 2009 8:00 PM

81 Clear migration path from traditional development. Support for enterprise features. Oct 15, 2009 8:08 PM

82 become more useable - is like pulling teeth atm to convert an existing app to
OSGi

Oct 15, 2009 8:17 PM

83 In most implementations and example I have seen, the hurdle of adopting OSGi
does not seem close to its benefits. Reminds me a lot of the old EJB model, an
inelegant solution that requires a wholesale architecture change for not much
benefit.

Oct 15, 2009 8:24 PM

84 - Oct 15, 2009 8:25 PM

85 good samples/examples !

the example that my boss sent me was *huge*- hard to wrap my head around.

Oct 15, 2009 8:39 PM

86 Simplify usage, more OSGi bundles available on maven repositories or OSGi
conversions of libraries.

Oct 15, 2009 9:11 PM

87 I've been using OSGi for about 8 years now in projects ranging from embedded to
server, so I'm not the one to ask about obstacles.

Oct 15, 2009 9:42 PM

88 Tooling, Framework independent instrumentation, OSGiefication of Core JSRs
(like JPA, JTA,...), trusted bundles with a reliable and well known version scheme.

Oct 15, 2009 10:00 PM

89 needs to be simpler :-) Oct 15, 2009 11:39 PM

90 1. Finding a budget of Market
2. Convenience Plan for Stable Versioning
3. OSGi Man-Power

Oct 16, 2009 12:14 AM

91 Number of available supported web frameworks. Oct 16, 2009 12:39 AM

92 Number of available supported web frameworks. Oct 16, 2009 12:39 AM

93 There's a lack of introductory and advanced books and tutorials. Oct 16, 2009 1:21 AM

6 of 8

Response Text

94 OSGi is fairly limited to Java. Java is dying language. Port it to .NET and I would
use it again.

Oct 16, 2009 2:02 AM

95 Classloader issues with legacy libraries and frameworks. Better debugging
support for strange ccl errors.

Oct 16, 2009 3:07 AM

96 - Lack of containers/application templates for managing the deployment of
applications
 - Compatibility with third-party libraries (i.e. some libraries are not designed for
deployment in an OSGi container)

Oct 16, 2009 4:22 AM

97 Better integration with JEE. Oct 16, 2009 5:08 AM

98 third-party libraries should be fixed/converted to OSGi Oct 16, 2009 5:27 AM

99 The memory consumption is definitely a bottleneck . Oct 16, 2009 5:29 AM

100 More quality open-source bundles. Oct 16, 2009 6:27 AM

101 - Need to simplify programming with osgi
- Relate osgi programming with the OO programming and provide a transition
path from the non-osgi programming to osgi-based programming
- Enterprise software is quickly getting complex, distributed and outsourced. Need
to emphasis how OSGI can help in addressing these concerns for enterprise
development.
- People are just getting comfortable with the webservices and SOA thingies. And
now comes another programming model: OSGI. Need to provide rationale and
motivation to learn the yet another new way of programming.

Oct 16, 2009 6:42 AM

102 Greater awareness of OSGi and its benefits (to achieve a better availability of
OSGi-ready software components), stabilization especially of startup-behaviour.

Comment on survey: Question 6 is incomplete, needs additional entry for "pure
non-web-related server software", Question 8 lacks a free text box for additional
possibilities like "getting bugs fixed for third-parts bundles".

Oct 16, 2009 6:56 AM

103 Java 5 support Oct 16, 2009 7:43 AM

104 communicating benefits and consequences Oct 16, 2009 7:57 AM

105 A better (IDE) way to discover and use offered services (that's why I prefer to use
Eclipse extension points, since I can explore them easily)

Oct 16, 2009 8:01 AM

106 Straightforward migration path from JEE. Oct 16, 2009 8:12 AM

107 Installing and configuring OSGi frameworks as standalone environments should
be simplified.

Oct 16, 2009 8:22 AM

108 Building bundles is quite difficult. Right now I use maven-bundle-plugin, which
eases the pain.

Oct 16, 2009 8:25 AM

109 It must provide an easier way to deploy typical Java webapps inside the OSGI
runtime.

Oct 16, 2009 9:15 AM

110 Improved support for both unit and integration testing form within every popular
IDE.
Improved packaging constructs (such as SpringSource plans).
Improved support for crosscutting concerns (aspects).

Oct 16, 2009 9:22 AM

111 Compatibility with existing common component provided. Database connection
pooling or Resource Pooling or sharing.

Oct 16, 2009 10:07 AM

112 I have been in Java/J2EE development for almost a decade and had never heard
of OSGi until now.

Oct 16, 2009 10:46 AM

113 It must become much simpler to get simple things done. Specifications like split
packages can cause much trouble for others.

Oct 16, 2009 10:49 AM

114 knowledge Oct 16, 2009 10:55 AM

115 - Libraries that are not yet compatible to the dynamic OSGi nature (e. g. new File()
other than FileInputStream())
- Too little literature about creating / structuring web applications on a OSGi-basis

Oct 16, 2009 11:43 AM

116 Classloading for libraries (first of all Hibernate) is sometimes tricky. Oct 16, 2009 11:51 AM

7 of 8

Response Text

117 adoption/implementation of the standard in a uniform way Oct 16, 2009 12:04 PM

118 In the case of Java EE solutions: More seemlessly blend into the current set of
technologies. It will be hard to convince customers to drop i.e. WAS / EARs and
i.e. completely migrate to Spring dm Server instead.

Oct 16, 2009 12:20 PM

119 Tooling, Documentation (i.e. best practices), JEE Apis must work in OSGi to
leverage existing developer communitiy

Oct 16, 2009 1:43 PM

120 At a platform implementation layer it will find widespread adoption, although the
overhead and exactness required of developers to accurately represent
dependencies is a challenge that will create some anti-bodies.

From an application developer perspective, they likely will end up using it
indirectly or through simplified models; raw development against plain OSGi
directly is an exact science that probably will need the help of tooling and/or
simpler models to become productive and simple enough to gain wide adoption.

Oct 16, 2009 2:10 PM

121 full, 2-way integration with Maven Oct 16, 2009 3:00 PM

122 Development tools, JEE feature, App Server support Oct 16, 2009 3:12 PM

123 Should be adopted by the main application servers such that using it on the server
side does not mean forgoing the features available on application servers.

Oct 16, 2009 3:29 PM

124 OSGi is trying to change the very process and toolset of an enterprise developer,
and the benefit is often not there to make such a bug change.

Oct 16, 2009 5:44 PM

125 Better tooling. Higher visibility beyond dev circuit. Oct 16, 2009 6:08 PM

126 Rather than buried within existing product lines - OSGi needs to be exposed to
the development community at large - not just Spring, but iPOJO, DS and all
variants. The recent Aries project is a step in the right direction. So to is the
Apache/SIGIL tooling project.

Oct 16, 2009 6:08 PM

127 Building and packaging for deployment. Primitive test frameworks. Oct 16, 2009 6:29 PM

128 Lack of understanding Oct 16, 2009 7:14 PM

129 Steep learning curve, immature toolset, most tasks are currently harder when
compared to traditional j2ee rather than easier because of the immaturity of the
tools and platform.

Oct 16, 2009 7:20 PM

130 Complexity Oct 16, 2009 7:41 PM

131 Top notch tool support! PDE is great, but we need it to be even better. Oct 16, 2009 8:59 PM

132 none Oct 16, 2009 9:11 PM

133 tooling support is missing Oct 16, 2009 10:38 PM

134 tooling Oct 16, 2009 11:41 PM

135 Usability (read: tools) could be better Oct 16, 2009 11:52 PM

136 Better tooling support. Oct 17, 2009 1:40 AM

137 Awareness. In many cases, OSGi technology is already in the enterprise and
many don't necessarily know it.

Oct 18, 2009 12:35 AM

138 Not sure if there exists any obstacles, but the tooling support could be better (dev
and test).

Reduce confusion about existing similiar solutions: Spring, Spring DM, iPojo,
BluePrint, Declarative Serives etc

Oct 18, 2009 10:18 AM

139 Simplicity, it adds a lot of complexity in development. Oct 18, 2009 1:57 PM

140 Tooling, tooling, tooling.
Spring Bundlor is a first nice try.

App-Servers should be able to download OSGi dependency bundles from the web
like Maven does it.

Oct 18, 2009 2:18 PM

141 None!....bundles should be specific to the app....i see no benefit is generic
support. "Supports OSGI" is an implementation detail not an API spec.

Oct 18, 2009 5:04 PM

8 of 8

Response Text

142 From what I've investigated so far (Spring DM, Platforms etc) it looks mostly ready
to go. What would be of greatest benefit is platforms such as Tomcat supporting it
straight out of the box. SpringSource look to be aiming to do that sort of thing
already.

Oct 18, 2009 8:40 PM

143 Better tooling and education. Oct 19, 2009 1:14 AM

144 Better availability of good tooling to create and modify bundles.
Genuinely distributed runtime frameworks.

Oct 19, 2009 11:11 AM

145 Currently, I have trouble finding good documentation on what OSGI really
provides, as well as documentation on best practises etc in OSGI.

Oct 19, 2009 1:34 PM

146 More awareness of the issues that OSGi solves. Many developers I find don't
understand they have a problem, and that modularity is the solution. The overall
state of components and modularity in the industry is appalling.

Oct 19, 2009 2:32 PM

147 Framework adoption. Oct 19, 2009 2:38 PM

148 Must resolve the issues with the Jigsaw project. Should define build time
equivalent of its runtime dependency resolution system.

Oct 19, 2009 2:52 PM

149 distributed osgi Oct 19, 2009 3:37 PM

150 Better documentation, tutorials, (esp. some dealing with special issues). In case of
Felix, better error messages to ease debugging.

Oct 19, 2009 4:08 PM

151 Provide usecases and advantages for us working with good old centralized
webapps.

Oct 19, 2009 4:26 PM

152 Migration path, support for legacy [java] applications Oct 19, 2009 4:31 PM

153 Complexity is a huge obstacle. It is hard to explain what OSGi does because of
it's technical nature. The business value of OSGi must be explainable in terms
that not very technical users can understand. Also, OSGi needs to paint a very
clear picture of it's relationship with JEE - it's at one level competitive and at
another level it does not care. This is a confusing message for many users.

Oct 19, 2009 5:53 PM

154 I have read about OSGI several times and what it is/does and why I should care
never seems to stick. Maybe I'm daft, but something that describes "in the old
days we had to do XX and it sucked because of YY and now OSGI comes along
and it looks like ZZ and so we rejoice" would make it simpler to understand.

Oct 19, 2009 6:40 PM

155 What is OSGi and why do I care? Oct 20, 2009 1:41 AM

