
Benefits of the Build
A Case Study in Continuous Integration

Kirk Knoernschild
TeamSoft, Inc.

www.teamsoftinc.com
http://techdistrict.kirkk.com

http://www.kirkk.com
pragkirk@kirkk.com

mailto:pragkirk@kirkk.com
mailto:pragkirk@kirkk.com

Continuous Integration

➡The Ground Rules
• The Strategy
• Positive Affects
• Case Study

Continuous Integration

• What does Continuous
Integration mean to
you?

Defined

• Integrate and build the system … every time
a task is completed [Beck in XP Explained]

• Integrate, build, and verify the system as
often as feasibly possible
– Hourly, Daily, On change

The Build

• Must be a clean compile
• Use most current source files
• All files must be compiled
• .jar files created
• All unit tests execute…successfully

Automated and Repeatable

Automated
• Minimizes integration

risk
• Build archives enable

defect diagnosis
• Time savings
• Improves morale

– Always have a working
product

Repeatable
• Avoids tedious,

repetitive and error
prone manual builds
– Consistent each time

• Can easily be run
anytime you want

• Incorporate metrics

Standard Environment

.

.

.

Local copy of
source code

Development Workstations

Master copy
of source code

CVS/SVN/Other

Pull from CVS
Build/Test
Deploy to App Server

J2EE App Server

Build machine

Micro Process

Your Golden Rule
• Stream must always compile
• Test cases must always run successfully
• If either of these two conditions is not true,

it must immediately become the focus of all
team members to rectify the situation

Micro Process

Code with Tests

Your Golden Rule
• Stream must always compile
• Test cases must always run successfully
• If either of these two conditions is not true,

it must immediately become the focus of all
team members to rectify the situation

Micro Process

Code with Tests

Workspace Build

Your Golden Rule
• Stream must always compile
• Test cases must always run successfully
• If either of these two conditions is not true,

it must immediately become the focus of all
team members to rectify the situation

Micro Process

Code with Tests

Workspace Build

Successful Tests

Your Golden Rule
• Stream must always compile
• Test cases must always run successfully
• If either of these two conditions is not true,

it must immediately become the focus of all
team members to rectify the situation

Micro Process

Code with Tests

Workspace Build

Successful Tests

Sync/Update

Your Golden Rule
• Stream must always compile
• Test cases must always run successfully
• If either of these two conditions is not true,

it must immediately become the focus of all
team members to rectify the situation

Micro Process

Code with Tests

Workspace Build

Successful Tests

Sync/Update

Workspace Build

Your Golden Rule
• Stream must always compile
• Test cases must always run successfully
• If either of these two conditions is not true,

it must immediately become the focus of all
team members to rectify the situation

Micro Process

Code with Tests

Workspace Build

Successful Tests

Sync/Update

Workspace Build

Successful Tests

Your Golden Rule
• Stream must always compile
• Test cases must always run successfully
• If either of these two conditions is not true,

it must immediately become the focus of all
team members to rectify the situation

Micro Process

Code with Tests

Workspace Build

Successful Tests

Sync/Update

Workspace Build

Successful Tests

Sync/Release

Your Golden Rule
• Stream must always compile
• Test cases must always run successfully
• If either of these two conditions is not true,

it must immediately become the focus of all
team members to rectify the situation

Fixing Defects

• Identify what you believe is the cause of the
defect.

• Create a test that recreates the defect. The test
should fail.

• Verify that the test failed due to the suspected
defect. If not, start over.

• Correct the defect.
• Run the test. The test should now pass.
• Run all tests. All tests should pass.
• Release your code, including the tests, following

the Micro Process.

50% of the solution
is identifying the
problem correctly.

Impediments

• Resolving conflicts
• Overwriting code
• Slow test execution
• Data dependent tests
• Neglecting to release all files

Continuous Integration

✓The Ground Rules
➡The Strategy
• Positive Affects
• Case Study

The Steps

• Create a build script
– Repeatable build

• Incorporate your optional metrics
• Create a build website (dashboard)
• Setup your automated build tool

– Cruise Control, AntHill

The Build Script

• Checkout from CVS
• Compile the application
• Run all the test cases
• Bundle the application
• Generate the metrics and statistics
• Deploy the application
• Deploy the build statistics application

Directory Structure

CVS Checkout

 <target name="checkout" depends="init">
 <cvs cvsRoot="c:/repositories"
 package="ContIntSample"
 dest="${basedir}"/>
 </target>

basedir is the build directory.

Result: Checks out the code to the build directory.

Command: ant –buildfile billpaybuild.xml checkout

Compile Application

<target name="billpaycompile" depends="billtestcompile">
 //do some setup stuff here…
 <javac srcdir="${buildsrc}" destdir="${build}">
 <classpath>
 <pathelement path="${buildsrc}"/>
 <pathelement location="${bindist}/bill.jar"/>
 <pathelement location="${bindist}/financial.jar"/>
 <pathelement location="${bindist}/auditspec.jar"/>
 <pathelement location="${bindist}/audit1.jar"/>
 <pathelement location="${bindist}/audit2.jar"/>
 </classpath>
 </javac>
 //do some cleanup stuff here.
</target>

Command: ant –buildfile billpaybuild.xml billpaycompile

Run Test Cases

Command: ant –buildfile billpaybuild.xml billpaytestcompile

<target name="billpaytestcompile" depends="billpaycompile">
 //do some setup stuff here…
 <junit printsummary="yes" haltonfailure="yes">
 <classpath>
 <pathelement path="${build}"/>
 //some other jars here….
 </classpath>
 <test name="com.extensiblejava.mediator.test.AllTests"
 todir="${buildstats}" outfile="billpaytest">
 <formatter type="xml"/>
 </test>
 </junit>
</target>

Bundle Application

<target name="bundle" depends="appcompile">
 <mkdir dir="${deploy}"/>
 <war destfile="${deploy}/billpay.war"
 webxml="${appdir}/WEB-INF/web.xml">
 <fileset dir="${appdir}/jsp"/>
 <webinf dir="${appdir}/WEB-INF">
 <exclude name="web.xml"/>
 <exclude name="lib/servlet-api.jar"/>
 </webinf>
 <lib dir="${bindist}" excludes=“*test.jar"/>
 <classes dir="${build}"/>
 </war>
</target>

Result: Checkout, Compiles, Test, and Bundles the application.

Command: ant –buildfile billpaybuild.xml bundle

Generate Metrics

Command: ant –buildfile billpaybuild.xml jdepend

<target name="jdepend" depends="pmd">
 <jdepend format="xml" outputfile="${buildstats}/jdepend.xml">
 <classespath>
 <pathelement location="${classes}"/>
 </classespath>
 <classpath location=""/>
 </jdepend>

 <style in="${buildstats}/jdepend.xml"
 out="${buildstats}/jdepend.html"
 style="${buildlib}/jdepend.xsl">
 </style>
</target>

Deploy Application

<target name="deploy" depends="undeploy">
 <taskdef name="deploy“ classname="org.apache.catalina.ant.DeployTask">
 <classpath>
 <pathelement path="${buildlib}/catalina-ant.jar"/>
 </classpath>
 </taskdef>
 <deploy url="http://localhost:8080/manager" path="/billpay"
 war="file:///${deploy}/billpay.war"
 username="admin" password="" />
 </target>

Result: Previous plus Deployes the application.

Command: ant –buildfile billpaybuild.xml deploy

Deploy Build Statistics

<target name="deploystats" depends="undeploystats">
 <taskdef name="deploy"
 classname="org.apache.catalina.ant.DeployTask">
 <classpath>
 <pathelement path="${buildlib}/catalina-ant.jar"/>
 </classpath>
 </taskdef>
 <deploy url="http://localhost:8080/manager" path="/billpaybuildstats"
 war="file:///${statsdeploy}/billpaybuildstats.war"
 username="admin" password="" />
</target>

Build Automation

• Setup CruiseControl
• Define the Project
• Start Cruising

Setup Cruise Control

• Installation
• Defining the directories
• Running Cruise Control

Project Definition

<cruisecontrol>
 <project name="ContIntSample" buildafterfailed="false">
 <bootstrappers>
 <currentbuildstatusbootstrapper file="logs/ContIntSampleBuildStatus.txt"/>
 </bootstrappers>
 <modificationset requiremodification="no" quietperiod="60">
 <cvs localworkingcopy="checkout/ContIntSample"/>
 </modificationset>
 <schedule interval="120">
 <ant antscript="c:\ant\bin\ant.bat“ buildfile="billpaybuild.xml" target="deploy"/>
 </schedule>
 <log dir="logs/ContIntSample">
 <merge dir="buildstats"/>
 </log>
 <publishers>
 <currentbuildstatuspublisher file="logs/ContIntSampleBuildStatus.txt"/>
 </publishers>
 </project>
</cruisecontrol>

Demonstration

• Start Tomcat
• Start Cruise Control
• Run Sample App and audit Bill 1 (15% discount).
• Modify discount for Audit Façade 2 to 10%.

Check-in. Let it build.
• Fix test case. I should have run tests locally first.

Let it build
– AuditFacade2Test and BillTest (why is BillTest

flawed?).

• Run Sample App and audit Bill (10% discount).

Continuous Integration

✓The Ground Rules
✓The Strategy
➡Positive Affects
• Case Study

Build Frequency

• Run on a scheduled basis
– Hourly, Daily

• Run on repository changes
• Anytime you want

– Build script executable outside Cruise Control

Consistency

• Build is performed the same way each time.
• Build is automated, but can also be run

manually.
• Results are predictable.
• Tests are frequently run.
• Metrics are automatically generated.

Zero Compile Errors

• Project pressures force us to compromise
our work.

• Adopt zero tolerance to compile errors and
failed tests.

• The Golden Rule.

Enforce Dependencies

• JDepend tests can enforce package
dependencies.

• Levelized Build can enforce .jar
dependencies.

• JarAnalyzer analyzes jar dependencies.

Drive the Lifecycle

• Application is always functional and ready.
• Frequent demos are possible.
• Frequent customer feedback.
• Acceptance test at any time.
• Performance test
• Load test
• Etc…

Objective Feedback

• Metrics generate feedback.
• PMD, JDepend, JarAnalyzer, Java2HTML,

JavaNCSS
• Others may include

– EMMA (test coverage), JavaDoc, UML

Consistent Development

• Build early in the lifecycle
• Build later in the lifecycle
• Build after product is released

Iterative Development

• Develop in small increments a product that
always works.

• Develop, Test, Build, and Deploy
frequently.

• Avoid integration nightmares.

Grass Roots Agility

• Culture and politics affect adoption of agile
methods.

• Everyone agrees on the benefit of an
automated and repeatable build that
produces a quality product frequently.

• Each of the above points is a step toward
agility.

Continuous Integration

✓The Ground Rules
✓The Strategy
✓Positive Affects
➡Case Study

Early Obstacles

• Iterative claim with waterfall execution
• Lack of development infrastructure
• Unproven team

– Inexperience with the CI approach

• Ill-defined process and few solid practices
• Everyone wanted documentation

everywhere

CI Evolution

Po
st

Pr
od

uc
tio

n

UC Doc
Client Meetings.

Tech. Proof

Data Model Ant Build (twice/wk)
Test Cases
Physical DB
Frequent Demos
Code Reviews
Team Meetings

Expand Team
Refactoring
Deployment
Growing UC

Little measurable progress
Gain process knowledge
Large amount of doc.
Little dev. infrastructure
Isolated developers

Measurable progress
Heavy development
Heavy collaboration

QA testing
Load testing
Defect tracking
Instant Msgr

C
I

A
pp

ro
ac

h

Lifecycle

Daily Activities

Sync/Release
Design
Code

Refactor
Unit Test

Lifecycle

Sync/Release
Design
Code

Refactor
Unit Test

Compile

Deploy

QA Test

Daily Activities
Weekly Activities

Client Meetings
(Demo, Use Case)

Lifecycle

Concept Proof
Code Review
Arch. Planning

Sync/Release
Design
Code

Refactor
Unit Test

Compile

Deploy

QA Test

Daily Activities
Weekly Activities
As Needed Client Meetings

(Demo, Use Case)

Lifecycle

Concept Proof
Code Review
Arch. Planning

Sync/Release
Design
Code

Refactor
Unit Test

Build QA Test

Client Meetings
(Demo, Use Case)

Daily Activities
Weekly Activities
As Needed

Use Case

Artifacts

Deploy

Driving Principle

• Development principles expanded to all
team members and activities

• If frequent code/build/test works, do all
aspects more frequently

• Never extend/include
• No diagram
• Grew throughout lifecycle
• Maintained by BA
• Updated in meetings
• Features, Flows, and Issues

Use Cases

(Key Point)

Modeling

• Only when needed
• Mainly communication
• Short-lived diagrams

– Little to no maintenance

• High level system model

(Key Point)

Design/Coding

• Architectural theme/metaphor
• Design sessions when necessary
• Architectural Proof

– Unproven technology, performance
• Emphasize modularity

– Physical (ex. Packages and .jars)
– Logical (ex. IDE Projects)

• End to End development first; rules second

(Key Point)

Testing

• JUnit test cases required
– Verification and test driven design

• Tests must always execute successfully
• QA testing by clients
• Code coverage using Emma

(Key Point)

Builds

• Twice per week (more if needed)
– Eventually Daily

• Execute full test suite
• Deploy for testing/ensure availability

– Configuration, performance

• Completely automated & repeatable
• All team members focus on creating a

successful build

(Key Point)

(Key Point)

Team Geography

• All team members on-site
• Developers a shout away from each other
• Clients a short walk away
• Instant Messaging
• All communication channels open

– Project Wiki

(Key Point)

Code Reviews

• Verify Compliance
• Identify Bad Practices
• Little emphasis

– Format, conventions, names, doc

• Major emphasis
– Exceptions, class responsibility, class

relationships, structure, smell
– PMD Reports run

(Key Point)

Client Interaction

• At least weekly meetings
• Each meeting emphasized a Use Case
• From Inception through Post-Deployment
• Frequent Demos

– Enabled by build

• Developers heavily involved
• Establish UI

(Key Point)

(Key Point)

(Key Point)

Defect Tracking

• Individual defects assigned UID
• Assigned by BA to Developer
• Developer updates defect status
• Project Management Report
• Manage defects and identify change

requests

Areas for Improvement

• Code Ownership (per use case)
• Specialization (build master)
• Test cases dependent on external

datasources (db and CICS)
• Inconsistent regions
• Automated acceptance tests
• Even more frequent builds

Parting Thoughts

• No process promotion
– Few members on the team would be able to

draw a correlation between our process and
RUP/XP

• Those areas where we had the most
difficulty were the activities that we
performed least frequently

