
www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

From Code To Architecture

Kirk Knoernschild
Chief Technology Strategist

QWANtify, Inc.
www.qwantify.com
kirk@qwantify.com

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Agenda

• Attempt the impossible – Define
Architecture

• Logical vs. Physical Design
• Component Heuristics

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Software Architecture

• An architecture is the set of significant decisions about
the organization of a software system, the selection of
the structural elements and their interfaces by which the
system is composed, together with their behavior as
specified in the collaborations among those elements, the
composition of these structural and behavioral elements
into progressively larger subsystems, and the architectural
style that guides this organization---these elements and
their interfaces, their collaborations, and their composition
(Kruchten: The Rational Unified Process. Also cited in Booch,
Rumbaugh, and Jacobson: The Unified Modeling Language
User Guide, Addison-Wesley, 1999).

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Software Architecture

• In most successful software projects, the expert
developers working on that project have a shared
understanding of the system design. This shared
understanding is called 'architecture.' This understanding
includes how the system is divided into components and
how the components interact through interfaces. These
components are usually composed of smaller components, but
the architecture only includes the components and
interfaces that are understood by all the
developers...Architecture is about the important stuff.
Whatever that is. (Fowler, Martin. IEEE Software, 2003.
“Who Needs and Architect.”) Quoting Ralph Johnson from
the XP mailing list.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Software Architecture

• Structure
• Subsystems and components
• Interfaces
• Your code defines the structure, is

pulled together to create subsystems
and components, and is decoupled
using interfaces.

• How is this so?

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Heuristics

• General “rules of thumb” offering
guidance in most usual situations.

• Not *always* appropriate.
– Is the “usual” case.

• Foundation of many common patterns.
• Techniques helping us tailor pattern

to context.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Goals of Development

• Maximize reuse
– Faster development

• Ease maintenance
– Less error prone changes
– Faster changes

• Coupling and Cohesion must always be
managed.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Logical Design

• Relationship between classes.
• Two types of relationships

– Dependency
– Inheritance

• Emphasis on maintenance and
extensibility.

• Relevant on all size systems.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Physical Design

• Structure of files (.jar) and
directories (packages).

• Dependencies exist between these
structures.

• Emphasis on reuse, build, and deploy.
• Relevant mainly to large systems.

– Modularity to resolve complexity

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

POJO Components

• Binary unit of deployment
– .jar file

• Relationships build upon each other
– Class relationships enable
– Package relationships enforce
– Component relationships achieve

• Aren’t coupled to a container

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

ComponentRelationships

• “Design component relationships”
• If changing the contents of a

component, C2, may impact the
contents of another component, C1,
we can say that C1 has a Physical
Dependency on C2. [JOUP02]

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Direct Dependency

The client component cannot
be deployed without the
service component.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Indirect Dependency

The client component cannot
be deployed without the
service or subsystem
component.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

PhysicalLayers

• “Component relationships should not
violate the logical layers.”

• Common logical layers
– Presentation
– Business Logic
– Data Access

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Logical Layers

For small systems, all may be in
the same .jar file. For larger systems,
breaking these apart can increase
reusability. And if you do break them
apart, the physical relationships *must*
be enforced.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Layer Violation

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Violation Corrected

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

BillPay System

• Design a system to handle payment and
auditing of various types of bills. The
system must integrate with 3rd party
auditing software, and a legacy financials
system that must be fed payment
information for reconciliation.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

 Version 1 Class Diagram

Note the bi-directional
associations.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

 Version 1 Component Diagram

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Physical Separation

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

AbstractComponents

• “Depend upon the abstract elements
of a component.”

• In other words, depend on abstract
classes or interfaces.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Abstract Dependency

“Inject” the implementation
into Client.
“Lookup” the implementation
within Client.

client.jar

service.jar

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Concrete Dependency

What if Bill must be
able to use different
auditing systems?

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Abstract Dependency

AuditFacade1 is injected
into Bill as an AuditFacade
type.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Component Relationships

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

AcyclicRelationships

• “Component relationships must be
acyclic.”

• A cyclic relationship exists when you
can trace your dependencies, and end
where you started.

• Cycles tend to creep into a system
unknowingly.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Cyclic and Acyclic Dependencies

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Leveling Relationships

• 0 are leaf component
– 3rd party components such as struts, spring,

hibernate, etc.

• 1 are lowest level components independent
of anything else or only leaf components.

• n level components dependent on n-1 level
components.

• Can only be done if relationships are acyclic

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Notes

• Cycles can be broken
– Escalation, Demotion, Callback

• The lower the level, the less volatile it
must be.
– Less volatile  more abstract

• Levelized components can be effectively
(and independently) tested.

• Levelized components can be built in order
from 1 to n  LevelizedBuild

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Recall - Abstract Dependency

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Recall - Component Relationships

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Acyclic Relationships

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Levelized BillPay

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

SeparateAbstractions

• “Separate abstractions from the classes
that realize them.”

• Directed Dependency
– Collocate abstraction and implementation

• Inverted Dependency
– Collocate abstraction and referencing class

• Eliminated Dependency
– Move abstraction to separate component

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Direct Dependency

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Inverted Dependency

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Eliminated Dependency

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Acyclic Relationships

How do I integrate
with another auditing
system? Where does
AuditFacade2 live?

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Recall - Levelized BillPay

Should I put
AuditFacade2 in
audit.jar?

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Abstract Components

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

CollocateExceptions

• “Exceptions should be close to the classes
that throw them.”

• Exceptions are often an afterthought.
• Consider using only unchecked exeptions.

– If you decide to change, you won’t break
everything.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Exception Placement

AuditFacade throws
the AuditException.

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

IndependentDeployment

• “Components should be as
independently deployable as possible.”

• Minimize a component’s outgoing
dependencies.

• “Wire” components together
• Don’t depend on the container

– Reduces reuse
– J2EE dependencies

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Recall - Abstract Components

How do I reuse
bill.jar without
financial.jar? Like in
a batch application?

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Recall – Class Structure

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Class Structure

1.) PayAction invokes Bill.pay()
and passes BillPayAdapter
as a BillPayer.
2.) Bill.pay() invokes
BillPayer.generateDraft()
3.)BillPayAdapeter.generateDraft()
invokes Payment.generateDraft()
passing itself as a Payable.
4.) Payment.generateDraft()
invokes Payable.getAmount()

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Reusing bill.jar

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

ImplementationFactory

• “Use factories to create a
component’s implementation.”

• new violates AbstractDependency
– Manage carefully

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Factory Class

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Final Structure

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Extension

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Analyzing Jar Files

• Run Jar Analyzer
– Generates xml showing dependencies between

.jar files.
– Ant task available to run as part of build

process.
– Feedback? Contributions?
– Available at www.kirkk.com

www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Additional Resources

• www.kirkk.com
– JarAnalyzer download and general information

on software development.
• www.qwantify.com

– Whitepapers, articles, and blogs on a variety of
technical topics.

• www.extensiblejava.com
– Resource devoted exclusively to dependency

management.

Please complete your session evaluation forms

http://www.kirkk.com/
http://www.qwantify.com/
http://www.extensiblejava.com/

