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Agenda

• Attempt the impossible – Define 
Architecture

• Logical vs. Physical Design
• Component Heuristics
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Software Architecture

• An architecture is the set of significant decisions about 
the organization of a software system, the selection of 
the structural elements and their interfaces by which the 
system is composed, together with their behavior as 
specified in the collaborations among those elements, the 
composition of these structural and behavioral elements 
into progressively larger subsystems, and the architectural 
style that guides this organization---these elements and 
their interfaces, their collaborations, and their composition 
(Kruchten: The Rational Unified Process. Also cited in Booch, 
Rumbaugh, and Jacobson: The Unified Modeling Language 
User Guide, Addison-Wesley, 1999). 
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Software Architecture

• In most successful software projects, the expert 
developers working on that project have a shared 
understanding of the system design. This shared 
understanding is called 'architecture.' This understanding 
includes how the system is divided into components and 
how the components interact through interfaces. These 
components are usually composed of smaller components, but 
the architecture only includes the components and 
interfaces that are understood by all the 
developers...Architecture is about the important stuff. 
Whatever that is. (Fowler, Martin. IEEE Software, 2003. 
“Who Needs and Architect.”) Quoting Ralph Johnson from 
the XP mailing list.
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Software Architecture

• Structure
• Subsystems and components
• Interfaces
• Your code defines the structure, is 

pulled together to create subsystems 
and components, and is decoupled 
using interfaces.

• How is this so?
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Heuristics

• General “rules of thumb” offering 
guidance in most usual situations.

• Not *always* appropriate. 
– Is the “usual” case.

• Foundation of many common patterns.
• Techniques helping us tailor pattern  

to context. 
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Goals of Development

• Maximize reuse
– Faster development

• Ease maintenance
– Less error prone changes
– Faster changes

• Coupling and Cohesion must always be 
managed.
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Logical Design

• Relationship between classes.
• Two types of relationships

– Dependency
– Inheritance

• Emphasis on maintenance and 
extensibility.

• Relevant on all size systems.
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Physical Design

• Structure of files (.jar) and 
directories (packages).

• Dependencies exist between these 
structures.

• Emphasis on reuse, build, and deploy.
• Relevant mainly to large systems.

– Modularity to resolve complexity
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POJO Components

• Binary unit of deployment
– .jar file

• Relationships build upon each other
– Class relationships enable
– Package relationships enforce
– Component relationships achieve

• Aren’t coupled to a container
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ComponentRelationships

• “Design component relationships”
• If changing the contents of a 

component, C2, may impact the 
contents of another component, C1, 
we can say that C1 has a Physical 
Dependency on C2. [JOUP02]
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Direct Dependency

The client component cannot 
be deployed without the 
service component.
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Indirect Dependency

The client component cannot 
be deployed without the 
service or subsystem 
component.
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PhysicalLayers

• “Component relationships should not 
violate the logical layers.”

• Common logical layers
– Presentation
– Business Logic
– Data Access
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Logical Layers

For small systems, all may be in 
the same .jar file. For larger systems, 
breaking these apart can increase
reusability. And if you do break them
apart, the physical relationships *must* 
be enforced.
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Layer Violation
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Violation Corrected
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BillPay System

• Design a system to handle payment and 
auditing of various types of bills. The 
system must integrate with 3rd party 
auditing software, and a legacy financials 
system that must be fed payment 
information for reconciliation.
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 Version 1 Class Diagram

Note the bi-directional 
associations.
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 Version 1 Component Diagram
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Physical Separation
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AbstractComponents

• “Depend upon the abstract elements 
of a component.”

• In other words, depend on abstract 
classes or interfaces.
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Abstract Dependency

“Inject” the implementation
into Client.
“Lookup” the implementation 
within Client.

client.jar

service.jar
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Concrete Dependency

What if Bill must be 
able to use different 
auditing systems?
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Abstract Dependency

AuditFacade1 is injected 
into Bill as an AuditFacade
type.
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Component Relationships
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AcyclicRelationships

• “Component relationships must be 
acyclic.”

• A cyclic relationship exists when you 
can trace your dependencies, and end 
where you started.

• Cycles tend to creep into a system 
unknowingly.
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Cyclic and Acyclic Dependencies
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Leveling Relationships

• 0 are leaf component
– 3rd party components such as struts, spring, 

hibernate, etc.

• 1 are lowest level components independent 
of anything else or only leaf components.

• n level components dependent on n-1 level 
components.

• Can only be done if relationships are acyclic
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Notes

• Cycles can be broken
– Escalation, Demotion, Callback

• The lower the level, the less volatile it 
must be.
– Less volatile  more abstract

• Levelized components can be effectively 
(and independently) tested.

• Levelized components can be built in order 
from 1 to n  LevelizedBuild
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Recall - Abstract Dependency
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Recall - Component Relationships
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Acyclic Relationships
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Levelized BillPay
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SeparateAbstractions

• “Separate abstractions from the classes 
that realize them.”

• Directed Dependency
– Collocate abstraction and implementation

• Inverted Dependency
– Collocate abstraction and referencing class

• Eliminated Dependency
– Move abstraction to separate component



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Direct Dependency
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Inverted Dependency
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Eliminated Dependency
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Acyclic Relationships

How do I integrate 
with another auditing 
system? Where does 
AuditFacade2 live?
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Recall - Levelized BillPay

Should I put 
AuditFacade2 in 
audit.jar?
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Abstract Components
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CollocateExceptions

• “Exceptions should be close to the classes 
that throw them.”

• Exceptions are often an afterthought.
• Consider using only unchecked exeptions.

– If you decide to change, you won’t break 
everything.
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Exception Placement

AuditFacade throws 
the AuditException.
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IndependentDeployment

• “Components should be as 
independently deployable as possible.”

• Minimize a component’s outgoing 
dependencies.

• “Wire” components together
• Don’t depend on the container

– Reduces reuse
– J2EE dependencies
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Recall - Abstract Components

How do I reuse 
bill.jar without 
financial.jar? Like in 
a batch application?
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Recall – Class Structure
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Class Structure

1.) PayAction invokes Bill.pay() 
and passes BillPayAdapter 
as a BillPayer.
2.) Bill.pay() invokes 
BillPayer.generateDraft()
3.)BillPayAdapeter.generateDraft() 
invokes Payment.generateDraft() 
passing itself as a Payable.
4.) Payment.generateDraft() 
invokes Payable.getAmount()
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Reusing bill.jar
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ImplementationFactory

• “Use factories to create a 
component’s implementation.”

• new violates AbstractDependency
– Manage carefully
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Factory Class
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Final Structure
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Extension
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Analyzing Jar Files

• Run Jar Analyzer
– Generates xml showing dependencies between 

.jar files.
– Ant task available to run as part of build 

process.
– Feedback? Contributions?
– Available at www.kirkk.com
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Additional Resources

• www.kirkk.com
– JarAnalyzer download and general information 

on software development.
• www.qwantify.com

– Whitepapers, articles, and blogs on a variety of 
technical topics.

• www.extensiblejava.com
– Resource devoted exclusively to dependency 

management.

Please complete your session evaluation forms

http://www.kirkk.com/
http://www.qwantify.com/
http://www.extensiblejava.com/

