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GOF Patterns in Java

Pattern Review
• The Patterns
• Pattern Retrospective
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Patterns Defined

• Recurring solution to common problem 
tailored to context

• Patterns have at least the following:
– Name, Problem, Solution, Consequences

• Patterns are to design as Algorithms are to 
code
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Pattern Review

• Must tailor to context
• Benefits

– Proven design, communication
• Negative Effects

– Hype, Proliferation, Overuse, Misapplication
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GOF Patterns

• 23 seminal patterns
• Creational (5) (Singleton, Builder)

– Patterns for creating complex structures
• Structural (7) (Decorator)

– Patterns for representing complex structures
• Behavioral (11) (Strategy, Command, Observer, Mediator)

– Patterns for accommodating complex 
collaborations and algorithms
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GOF Patterns in Java

• Pattern Review
The Patterns
• Pattern Retrospective
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Command

• Intent: Encapsulate a request as an object 
allowing you to parameterize clients with 
different requests

• Our Problem: Lot of Data Access Objects 
(DAO), each with strikingly similar 
functionality
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Possible Solutions

• Alternative: Inherit all DAO from a common base 
class

• Command: Parameterize a generic DAO with a 
SQL request

• Tradeoffs
– Lots of SQL request classes
– Easy to add new SQL request classes
– Any class can be a Command if the Command is an 

interface
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Command Structure

1. Client creates the ConcreteCommand
2. Invoker receives the Command
3. Invoker issues request by calling Command operation(s)
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DAO Command Structure
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Singleton

• Intent: Ensure a class has only one instance, 
and provide a global access point

• Our Problem: DataBaseDAO is inherited 
from a common base class to support other 
types of datasources
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Possible Solutions

• Alternative: A utility class or static methods
• Singleton: DataBaseDAO with private 

constructor and static getInstance method
• Tradeoffs

– Supports polymorphism and callbacks
– Minimize object creation
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Singleton Structure

1. Static instance attribute of Singleton datatype
2. Static getInstance method that returns a reference to instance
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DataBaseDAO Singleton

getConnection method can be 
overidden by other DAO types (ex. 
Those accessing a legacy system)
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Decorator

• Intent: Add responsibilities to an object 
dynamically

• Our Problem: Need ability to log and 
execute SQL statement without bind 
variables
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Possible Solutions

• Alternative: Utility class that accepts Selectable, 
parses it, and returns SQL string

• Decorator: Class implementing Selectable that 
accepts Selectable to constructor and returns 
appropriate SQL String

• Tradeoffs
– Non-invasive way to enhance functionality
– Additional classes with more complex learning curve 

(or maybe just a different way of thinking about utility 
classes)
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Decorator Structure

1. Decorator is 
configured with a 
Component

2. ConcreteDecorator 
provides custom 
behavior

3. Decorator invokes 
operations on 
Component
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Selectable Decorator
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Strategy

• Intent: Define a family of algorithms, 
encapsulate each one, and allow them to 
vary independently

• Our Problem: Returning ResultSet to clients 
of DataBaseDAO is limited to a JDBC 
datasource
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Possible Solutions

• Alternative: Pass back a bean or implement 
ResultSet for other datasources

• Strategy: Create a DataCursor that 
represents a TabularRecordSet

• Tradeoffs
– No dependency on ResultSet and JDBC
– More classes and increased complexity
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Strategy Structure

1. Strategy defines the 
interface

2. ConcreteStrategy 
provides the 
implementation
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DataCursor Strategy

DataCursor defines operations 
to traverse a dataset and 
retrieve values
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Mediator

• Intent: Define an object that encapsulates 
how a set of objects interact

• Our Problem: Queue updates and inserts so 
they are all part of the same Logical Unit of 
Work (LUW)
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Possible Solutions

• Alternative: Code it each time or provide utility 
classes to offer some of the reusable functionality

• Mediator: Create a DAOMediator with which 
Updateable and Insertable instances are registered

• Tradeoffs
– Simplifies transaction management
– Centralizes code resulting in bloated mediators
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Mediator Structure

ConcreteMediator manages collaboration between Colleague instances
Colleague instances communicate with each other through Mediator
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DataBaseDAO Mediator
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Observer

• Intent: Define relationship between objects 
so that when one object changes its state, all 
its dependents are notified and updated

• Our Problem: When using the Mediator for 
inserts, how do we manage foreign keys for 
child tables
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Possible Solutions

• Alternative: Manage keys using an Array
• Listener: Create a KeyListener so that 

Insertables can be notified of their 
necessary key values 

• Tradeoffs
– Consistent key management
– Abstraction complexity
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Observer Structure



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

KeyListener
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Builder

• Intent: Separate the construction of an 
object from its representation so that the 
same construction process can create 
different representations

• Our Problem: Business objects must be 
built differently (ie. Lazy load, fully 
initialized)
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Possible Solutions

• Alternative: Retrieve the data and set the 
appropriate values on the business object

• Builder: Configure a business object with a 
builder that initializes the values

• Tradeoffs
– Flexible way to build business objects using different 

and unknown constructions processes
– Adding new business objects (Products) could prove 

very difficult as all builders may need to be modified
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Builder Structure
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Business Objects

- buildEmployee is actually a Factory Method
- Originating Employee is Director created by Factory Method
- Manager and Staff are Employee instances created by builders
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GOF Patterns in Java

• Pattern Review
• The Patterns
Pattern Retrospective
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Applying Patterns

• Difficult to identify up-front need
• Need usually arises based on complex 

behavior or structure
• Knowing patterns help offer template 

solution
• Tailoring pattern to context based on need 

for flexibility 
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Compound Patterns

• Patterns rarely used individually or in a 
vacuum

• Single hierarchy/composition structure may 
consist of many patterns
– Ex. Insertable is a Command, Adapter, 

Observer, Decorator
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Overall Structure
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Common Traits

• Abstraction
• Hierarchy
• Coupling
• Cohesion
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Gleaning Heuristics

• Capture rules common to many patterns
• Famously, “favor object composition over 

class inheritance” 
• Examples of others…

– Avoid implementation inheritance
– Abstractly couple classes
– and many, many more…
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Additional Resources

• www.kirkk.com
– JarAnalyzer download and general information 

on software development.
• www.qwantify.com

– Whitepapers, articles, and blogs on a variety of 
technical topics.

• www.extensiblejava.com
– Resource devoted exclusively to dependency 

management.

Please complete your session evaluation forms

http://www.kirkk.com/
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