
www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

GOF Patterns in Java

Kirk Knoernschild
Chief Technology Strategist

QWANtify, Inc.
www.qwantify.com
kirk@qwantify.com



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

GOF Patterns in Java

Pattern Review
• The Patterns
• Pattern Retrospective



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Patterns Defined

• Recurring solution to common problem 
tailored to context

• Patterns have at least the following:
– Name, Problem, Solution, Consequences

• Patterns are to design as Algorithms are to 
code



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Pattern Review

• Must tailor to context
• Benefits

– Proven design, communication
• Negative Effects

– Hype, Proliferation, Overuse, Misapplication



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

GOF Patterns

• 23 seminal patterns
• Creational (5) (Singleton, Builder)

– Patterns for creating complex structures
• Structural (7) (Decorator)

– Patterns for representing complex structures
• Behavioral (11) (Strategy, Command, Observer, Mediator)

– Patterns for accommodating complex 
collaborations and algorithms



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

GOF Patterns in Java

• Pattern Review
The Patterns
• Pattern Retrospective



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Command

• Intent: Encapsulate a request as an object 
allowing you to parameterize clients with 
different requests

• Our Problem: Lot of Data Access Objects 
(DAO), each with strikingly similar 
functionality



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Possible Solutions

• Alternative: Inherit all DAO from a common base 
class

• Command: Parameterize a generic DAO with a 
SQL request

• Tradeoffs
– Lots of SQL request classes
– Easy to add new SQL request classes
– Any class can be a Command if the Command is an 

interface



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Command Structure

1. Client creates the ConcreteCommand
2. Invoker receives the Command
3. Invoker issues request by calling Command operation(s)



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

DAO Command Structure



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Singleton

• Intent: Ensure a class has only one instance, 
and provide a global access point

• Our Problem: DataBaseDAO is inherited 
from a common base class to support other 
types of datasources



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Possible Solutions

• Alternative: A utility class or static methods
• Singleton: DataBaseDAO with private 

constructor and static getInstance method
• Tradeoffs

– Supports polymorphism and callbacks
– Minimize object creation



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Singleton Structure

1. Static instance attribute of Singleton datatype
2. Static getInstance method that returns a reference to instance



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

DataBaseDAO Singleton

getConnection method can be 
overidden by other DAO types (ex. 
Those accessing a legacy system)



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Decorator

• Intent: Add responsibilities to an object 
dynamically

• Our Problem: Need ability to log and 
execute SQL statement without bind 
variables



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Possible Solutions

• Alternative: Utility class that accepts Selectable, 
parses it, and returns SQL string

• Decorator: Class implementing Selectable that 
accepts Selectable to constructor and returns 
appropriate SQL String

• Tradeoffs
– Non-invasive way to enhance functionality
– Additional classes with more complex learning curve 

(or maybe just a different way of thinking about utility 
classes)



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Decorator Structure

1. Decorator is 
configured with a 
Component

2. ConcreteDecorator 
provides custom 
behavior

3. Decorator invokes 
operations on 
Component



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Selectable Decorator



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Strategy

• Intent: Define a family of algorithms, 
encapsulate each one, and allow them to 
vary independently

• Our Problem: Returning ResultSet to clients 
of DataBaseDAO is limited to a JDBC 
datasource



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Possible Solutions

• Alternative: Pass back a bean or implement 
ResultSet for other datasources

• Strategy: Create a DataCursor that 
represents a TabularRecordSet

• Tradeoffs
– No dependency on ResultSet and JDBC
– More classes and increased complexity



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Strategy Structure

1. Strategy defines the 
interface

2. ConcreteStrategy 
provides the 
implementation



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

DataCursor Strategy

DataCursor defines operations 
to traverse a dataset and 
retrieve values



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Mediator

• Intent: Define an object that encapsulates 
how a set of objects interact

• Our Problem: Queue updates and inserts so 
they are all part of the same Logical Unit of 
Work (LUW)



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Possible Solutions

• Alternative: Code it each time or provide utility 
classes to offer some of the reusable functionality

• Mediator: Create a DAOMediator with which 
Updateable and Insertable instances are registered

• Tradeoffs
– Simplifies transaction management
– Centralizes code resulting in bloated mediators



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Mediator Structure

ConcreteMediator manages collaboration between Colleague instances
Colleague instances communicate with each other through Mediator



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

DataBaseDAO Mediator



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Observer

• Intent: Define relationship between objects 
so that when one object changes its state, all 
its dependents are notified and updated

• Our Problem: When using the Mediator for 
inserts, how do we manage foreign keys for 
child tables



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Possible Solutions

• Alternative: Manage keys using an Array
• Listener: Create a KeyListener so that 

Insertables can be notified of their 
necessary key values 

• Tradeoffs
– Consistent key management
– Abstraction complexity



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Observer Structure



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

KeyListener



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Builder

• Intent: Separate the construction of an 
object from its representation so that the 
same construction process can create 
different representations

• Our Problem: Business objects must be 
built differently (ie. Lazy load, fully 
initialized)



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Possible Solutions

• Alternative: Retrieve the data and set the 
appropriate values on the business object

• Builder: Configure a business object with a 
builder that initializes the values

• Tradeoffs
– Flexible way to build business objects using different 

and unknown constructions processes
– Adding new business objects (Products) could prove 

very difficult as all builders may need to be modified



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Builder Structure



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Business Objects

- buildEmployee is actually a Factory Method
- Originating Employee is Director created by Factory Method
- Manager and Staff are Employee instances created by builders



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

GOF Patterns in Java

• Pattern Review
• The Patterns
Pattern Retrospective



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Applying Patterns

• Difficult to identify up-front need
• Need usually arises based on complex 

behavior or structure
• Knowing patterns help offer template 

solution
• Tailoring pattern to context based on need 

for flexibility 



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Compound Patterns

• Patterns rarely used individually or in a 
vacuum

• Single hierarchy/composition structure may 
consist of many patterns
– Ex. Insertable is a Command, Adapter, 

Observer, Decorator



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Overall Structure



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Common Traits

• Abstraction
• Hierarchy
• Coupling
• Cohesion



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Gleaning Heuristics

• Capture rules common to many patterns
• Famously, “favor object composition over 

class inheritance” 
• Examples of others…

– Avoid implementation inheritance
– Abstractly couple classes
– and many, many more…



www.qwantify.comwww.qwantify.com

Patterning Solutions for your SuccessPatterning Solutions for your Success

Additional Resources

• www.kirkk.com
– JarAnalyzer download and general information 

on software development.
• www.qwantify.com

– Whitepapers, articles, and blogs on a variety of 
technical topics.

• www.extensiblejava.com
– Resource devoted exclusively to dependency 

management.

Please complete your session evaluation forms

http://www.kirkk.com/
http://www.qwantify.com/
http://www.extensiblejava.com/

