

© Kirk Knoernschild, 2001 1of 4

Architecture's Significance

Introduction
For so long now, industry has been preaching the virtues of the object oriented paradigm. As we've been
told for quite some time, reuse is the Holy Grail of this widely accepted, and universally promoted,
paradigm. While not without it's detractors, object orientation is here to stay. Most of the popular languages
today have at least some characteristics that make it "object oriented". In fact, I wonder if a language could
survive today if it weren't dubbed "object oriented". It’s quite common to hear co-workers and peers make
statements such as, "We should do it this way. It's the new trend." The "way" and the "trend" being object
oriented. Please, don't take this wrong. I am definitely an advocate of this powerful technology. But I really
think it's time we seriously ask ourselves a question. Why hasn't the object oriented paradigm allowed us to
achieve the high degree of reuse it once promised? Is it because we are doing something wrong? Or quite
possibly, something else keeps getting in the way.

The Paradox
In, No Silver Bullet, by Frederick Brooks, Mr. Brooks states that:

The hardest single part of building a software system is deciding precisely what to build.

In the premier edition of The Rational Edge, Walker Royce cites the following:

For every $1 you spend on development, you will spend $2 on maintenance.

While probably not astounding, these statements should be alarming. Two of the most significant activities
performed when developing software are also the most inefficient and error prone. Simply stated, the
establishment of requirements, and the way in which we deal with changing requirements in relation to
system maintenance, is the number one challenge presented to any software development team. Therefore,
before we are concerned with creating reusable code, we need to first be concerned with creating a system
that matches the user's requirements, and is resilient to changing requirements. For our system will truly be
judged as a success or failure, not by how much code we reuse, but by how well it satisfies user's needs.
Herein, however, lies the problem.

As stated above, a system's requirements are not static. They are in constant evolution, and are dictated by
the demands of the business and the needs of the user. Therefore, our system is judged not only by how
well it adheres to the requirements of today, but also by how well it can adapt to the requirements of
tomorrow. In other words, our system survives only as long as it can evolve. However, the survivability and
evolvability of a system are competing influences. Subsequently, any emphasis we place on writing
reusable code today will only be negated by tomorrow's demand to evolve.

Let's explore this more deeply by examining the life of a typical system. Consider a system that has just
been deployed, and meets the requirements of today. As these requirements change, our system undergoes
a maintenance effort to support these new requirements. The ease with which we are able to accommodate
these changes is a direct result of how accommodating to change our system is. A rigid and inflexible
system cannot undergo changes in the same graceful fashion that a malleable and dynamic system can.
Eventually, as we perform more and more maintenance cycles, the instability of our system may reach a
point where the cost to continue evolving the system can no longer be justified. At this point, our system
dies. This is illustrated in Figure 1, where we see that the decision to implement a requirements change
results in either the maintenance of that system to fulfill these new requirements, producing once again a
reliable and stable system, or results in the death of that system. This decision is typically directly related to
the cost of the maintenance effort.

Subsequently, it becomes much clearer that our system's internal structure directly impacts the ability of
that system to evolve gracefully. The internal structural representation of a system is commonly referred to
as a system's architecture, and the situation above describing the two competing influences is the
Architecture Paradox. Because of this, we can also now state the following:

© Kirk Knoernschild, 2001 2of 4

The cost to maintain a system is directly related to the resiliency of the
system’s architecture.

Figure 1

Defining Architecture
Detailing the steps necessary to define a resilient architecture could easily fill a large book, if not a
complete volume. Therefore, our intent is not to discuss how to define an entire system's architecture, but to
explain what's available to help us do a better job. In fact, the fashioning of the complex structures
necessary to represent a software system is a very difficult task. Couple this with the need to design for
changes we are unsure will ever occur, and the challenge is only compounded. So, how can we define these
resilient architectures?

First, we must take advantage of the flexibility of object orientation. The object-oriented paradigm lends
itself quite nicely to creating structures that are extremely flexible. In fact, taking advantage of common
principles and patterns can lead us in this direction. For example, combining two simple patterns such as a
Strategy and a Factory allows us to create a system that is extremely extensible, yet won't require a lot of
maintenance effort. This is an extremely valuable trait of object-orientation, and we should carefully
consider using it to design flexible systems that can accommodate change, before necessarily attempting to
design for reuse.

Object Orientation and the power behind it is a great tool to help us design for change. However, it's
virtually impossible to simply sit down and create code that is flexible enough to bend and flex in the
manner we'll need it to. Visual Modeling can aid greatly in providing a simplified representation of our
system that can help us see and understand how our system is architected. It's obvious that if we understand
something more fully, we will be more effective in maintaining it. Creating these models help to validate
that our system's architecture is more resilient by helping us to understand that architecture more fully. This
allows us to communicate the system to others, who can then offer valuable insight based on their
experiences.

© Kirk Knoernschild, 2001 3of 4

Another tool to help us design for change is refactoring. Refactoring can be thought of as improving the
design of existing code. Typically, when refactoring, we do not make any functional changes, but focus
strictly on improving a system's internal structure. Refactoring should be done in a very disciplined fashion,
not ad hoc, which would be little different from hacking. Taking a disciplined approach to refactoring,
diligently and truthfully applying the rules when and where needed, will almost always result in a more
architecturally sound system.

In reality, a pragmatic combination of each of the above approaches, in conjunction with other best
practices, will work best. Modeling visually to help us resolve any undecided issues works great initially,
and throughout development as new challenges are encountered. Inevitably, as the system grows, it will
require some refactorings to ensure it maintains the survivability and evolvability necessary to live and
expand as the requirements and business demand. Object orientation, with it's flexible principles and
patterns, is the paradigm that lends us the flexibility necessary.

In fact, many of us are likely applying each of these techniques already. However, the key is to take the
thought and time to apply these techniques to the most critical pieces of the application. It's important that
the areas within the application that are most likely to undergo changes in requirements are the areas into
which we've built the most flexibility. We really don't need, nor do we want, this flexibility everywhere, as
there is ultimately an accompanying degree of complexity associated with it. Therefore, the importance of
applying these concepts pragmatically cannot be undermined.

Maintenance and Reuse
By now, we must be wondering where reuse fits into the picture? Have we abandoned all hopes to reuse
components within our system? The answer to this is an emphatic "no." However, our approach to reuse
may be a bit different than what it was previously. In fact, we cannot simply sit down and write a reusable
class library or framework. It's simply not possible. This is primarily because these reusable components
must exhibit the most flexibility and resiliency to change. This is extremely difficult, and therefore, these
reusable components need to evolve from an existing code base. Consider a statement made in the paper
"Patterns for Evolving Frameworks" by Don Roberts and Ralph Johnson:

People develop abstractions by generalizing from concrete examples.
Every attempt to determine the correct abstractions on paper without
actually developing a running system is doomed to failure. No one is
that smart.

Therefore, we must first design a system that
functions correctly. Then, the identification of the
reuse candidates within that system can take place.
Upon identifying the appropriate candidates, we must
find the abstractions that are generally applicable,
and cull these from the existing design. This too is
part of maintenance, however, with a somewhat
different focus. Here, we are refactoring to improve
our code structure, ultimately achieving reuse. The
success with which we will be able to abstract these
most useful modules will be directly related to the
structural stability of the application. The more rigid
the application, the more difficult it will be to extract
and create more reusable modules. The more flexible
our architecture, the higher the likelihood that the
system can be bent, twisted, and restructured to
produce the desired result. As we perform this
maintenance effort, the UML can play an extremely
valuable role in helping to not only understand the
system's existing structure, and realize the impact of
Conceptual Difference
Reuse can exist at an entirely different level than
does maintenance. Changing requirements typically
results in a change to source code, implying the
recompilation of a set of classes, after modifying
one or more of those classes. Reuse, however, is
obtained at the unit of deployment. This unit varies
across languages. In Java, this unit is the package.
Whether we reuse a JavaBean, or a portion of an
API, we need reference to a package. When we
reference that package, we are dependent on that
package, and it's contents, in its entirety.
Keep in mind that reuse is not a benefit of object
orientation, but instead a goal. Reuse can occur
within any language, object-oriented or not. The
benefit of object-orientation is the flexible
architectures we can create with it. From these
flexible architectures, reuse is bred.

© Kirk Knoernschild, 2001 4of 4

our efforts, but also to help us work through complex challenges. Now, the true importance of architecture
is fully realized, and it becomes more apparent that architectural resiliency coupled with disciplined design
is the most effective way to create reusable modules. Therefore, we can now state the following:

Resilient architectures breed reuse.

Now, if we firmly believe that reuse is the Holy Grail of object-orientation because reusing code will allow
us to develop applications more quickly, resulting in lower cost, and reduced maintenance. Then, because
cost and maintenance are directly related to architectural resiliency, and architecture breeds reuse, the
following also holds true:

Establishing our software system's architecture is the single most
important technical decision we face when developing software.

Conclusion
We should all agree upon the significant role that our software’s architecture plays in the success of our
software systems. The architecture contributes not only to the immediate success of a system, but also to its
survival, and growth in the months and years to come. Therefore, careful thought and deliberation should
be given when establishing the structure of a system. It has the ability to profoundly impact the success of
our software development efforts.

References
[SUB99] Architecture Paradox. Dr. Subrahmanyam A. V. B., 1999.

[PLOP98] Patterns Languages of Program Design, Volume 3. Martin, et. al. Addison-Wesley, 1998.

[ROYCE2000] The Rational Edge. "Next-Generation Software Economics", Walker Royce. December,
2000.

[BROOKS] Computer Magazine. "No Silver Bullet: Essence and Accidents of Software
Engineering", Frederick P. Brooks, 1987.

[FOWLER99] Refactoring: Improving the Design of Existing Code. Fowler, Martin. Addison-Wesley,
1999.

[GOF96] Design Patterns: Elements of Reusable Object-Oriented Software. Gamma, et. al.
Addison-Wesley, 1996.

	Architecture's Significance
	
	Introduction
	The Paradox
	Defining Architecture
	Maintenance and Reuse
	Conclusion
	References

