Composite Reuse Principle

Favor polymorphic composition of objects over inheritance.

Principle Foundation

Reuse has long been touted as the Holy Grail of object-orientation. Seen as the mechanism through which
we achieve high degrees of reusability, inheritance is often used in an attempt to realize reuse. In this effort,
however, inheritance typically causes more problems than solutions. Brittle architectures are often the
result of bloated ancestor classes attempting to define perceived default behaviorsin future descendent
classes. The result is a necessity to override the ancestor code in descendents. Worse yet, we find that we
copy code from other classes.

The Composite Reuse Principles focuses on achieving reuse through delegation (or more appropriately

forwarding), instead of defining default behaviors in ancestor classes. Inheritance is only used in the
Composite Reuse Principle to help us flexibly manage implementations.

Sample Illustration

public ¢lass Account { |_\‘
private AccountType _accountType;

pubic AccountlAccountType accountType) {
this._accountType = accountType;

!

publicwaid depositfloat amt) {
this._accountType.deposit{amt);
h

I

public abstract class AccountType [
Acoaurt Acount Type public abstract wvoid depositfloat amt);
b
rdeposit{amt : float) -
o tizmd - Aozt
rAccountaccountType @ AccountType i zﬁ kid
Sawing Checking
tdepositfamt : float) tdepositfamt : float)
public class Saving extends AccountType { public class Chedking extends AccountType {
publicvoid depositffloat amt) | publicwoid depositifloat amt) {
Mdeposit saving amt. dideposit chedking amt.
h h
I l
Figure 1

In Figure 1, our Account class delegates behaviors specific to a type of account to the Account Type
hierarchy. Doing so allows us to flexibly extend our application by defining new Account Type
descendents, which ensures compliance with the Open-Closed Principle. More closely pertaining to the
Composite Reuse Principle, this structure also allows client classes other than Account to reuse the
Account Type hierarchy, as Account Type and all descendents are not coupled to the Account class.

© Kirk Knoernschild, 2001.

Solving this design challenge using inheritance resultsin our Savi ng and Checki ng classes to inherit
directly from the Account class. Doing so limits the likelihood that other clients wishing to take
advantage of Savi ng and Checki ng functionality cannot do so outside the context of Account .

Key Implementation Considerations

» Deélegation This principle relies heavily upon delegation, or more appropriately forwarding.
Classes with a desire to reuse behavior call methods on other classes instead of
calling methods on an ancestor.

» Interface Class If it'sunlikely that the reuse implementation will change, the ancestor class may be
omitted. Thisresultsin asimpler design, but also resultsin possible future
challenges asit will be difficult to comply with the Open-Closed Principle, which
isanatural by-product of the Composite Reuse Principle.

e Implicitt hi s When reusing through delegation, additional coding is required as we are lacking
theimplicit t hi s we receive when using inheritance. Therefore, instead of smply
coding

thi s. deposit(100)
were we to use inheritance, we are forced to first instantiate the desired concrete
class, then reference explicitly that variable to call the desired method, as follows:
Account Type a = new Savi ng();
a. deposi t (100);
This obviously resultsin more coding as well as introducing instance creation
challenges, as discussed in the Open-Closed and Dependency Principles.

Consequences

The granularity of the classes to which we delegate is extremely important when applying this principle.
While structurally similar to the Open-Closed Principle, there is a separation of concerns. Open-Closed
Principle emphasi zes extending the application through inheritance based on existing clients. Composite
Reuse Principle emphasizes the ability to reuse the hierarchy across clients. Subsequently, the behaviors
defined in our supplier classes are the emphasis here. Thiswill likely result in refactoring the supplier
classes as new clients are introduced.

When refactoring the supplier classes, applicability of the Composite Reuse Principleis cyclic. Behaviors
common to one context, but not another are factored out into another, separate hierarchy. As such, the
configuration of objects present is certainly context specific.

Related Principles
Composite Reuse Principle helps us comply with the Open Closed Principle.

Composite Reuse Principle istypically used in conjunction with Dependency Inversion, though thisis not a
reguirement.

References
[OOSC88] Object-Oriented Software Construction. Bertrand Meyer. Prentice-Hall, 1988.

[MARTINOQ] Design Principles and Design Patterns. Robert C. Martin, 2000.
[JOUP0O2] Java Design: Objects, UML, and Process.. Kirk Knoernschild. Addison-Wesley, 2002.

© Kirk Knoernschild, 2001. 2

	Principle Foundation
	Sample Illustration
	Key Implementation Considerations
	Consequences
	Related Principles
	References

