

© Kirk Knoernschild, 2001. 1

Dependency Inversion Principle
Depend upon abstract entities, not concrete ones.

Principle Foundation
In object-oriented systems, there exists three degrees of coupling between classes; concrete, abstract, and
nil. Concrete coupling exists when two classes, each concrete (or instantiable), directly reference each
other. Nil coupling occurs between classes that have no direct relationship to each other. Last, abstract
coupling is present when a concrete class has a relationship to another abstract class. Coupling at the
abstract level allows for the greatest flexibility between two classes that must have a relation.

Dependency Inversion emphasizes flexible relationships between our system entities. Fundamentally, if we
wish to comply with the Open-Closed Principle, then dependency inversion is the means through which
compliance can be achieved.

Sample Illustration

Figure 1

The diagram in Figure 1 shows that our classes are coupled at the abstract level. Doing so lends us great
flexibility should we need to extend the system. As stated above, dependency inversion is the means
through which we achieve compliance with the Open-Closed Principle.

Key Implementation Considerations
• Abstract Coupling Coupling abstractly is the key behind dependency inversion. Doing so allows

substitution of descendents anywhere the ancestor is referenced. Caution must be
exercised to free the client from any references to concrete descendents.

• Volatility Coupling at the abstract level, while flexible, also offers additional complexities.
In some situations, it may not be warranted because the likelihood of change is

© Kirk Knoernschild, 2001. 2

low, or the behavior is very static. In these cases, depending on a concrete class
may be desirable.

• Creation To create an instance, the concrete class must be either explicitly referenced or
loaded dynamically. A closed class, therefore, should not be responsible for
creating concrete instances, instead deferring creation to a factory.

Consequences
While certainly powerful, dependency inversion can also be more challenging to implement. Because of the
inverted nature of the relations, it's likely that object factories will need to be used for object creation to
help avoid references to concrete instances.

We'll also find that this leads to a larger number of system classes. Therefore, while helping maintenance
efforts by providing flexible application extension points, maintenance can be more difficult for those
unfamiliar with object technology or the application architecture.

Related Principles
Dependency Inversion Principle is the means through which Open-Closed Principle is achieved.

Composite Reuse Principle

Stable Abstractions Principles and Stable Dependencies Principle use dependency inversion to create
flexible package relationships.

References
[MARTIN00] Design Principles and Design Patterns. Robert C. Martin, 2000.

[JOUP02] Java Design: Objects, UML, and Process. Kirk Knoernschild. Addison-Wesley, 2002.

	Principle Foundation
	Sample Illustration
	Key Implementation Considerations
	Consequences
	Related Principles
	References

